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While the development of potential drug molecules based on the known three-dimensional structure of the
macromolecular target is doubtless one of the more-potent approaches to rational drug design, the estimation of
associated changes in the free energy of ligand binding is all but trivial. Major obstacles include the treatment of
long-range electrostatic effects and charge transfer, the calculation of solvation energies, the treatment of
entropic effects, and the quantification of induced fit. In the last decade, a number of computational concepts
have nonetheless matured into powerful tools for the development of drug-candidate molecules. These concepts
have mainly focussed on the binding of the small molecule to a bioregulator. More recently, need has arisen to
develop tools for a safe prediction of more-complex phenomena such as metabolism, toxicity, and
bioavailability.
We describe the ongoing development of a virtual laboratory on the Internet to allow for a reliable in silico
estimation of harmful effects triggered by drugs, chemicals, and their metabolites. For this, we used our recently
developed underlying technology (5D-QSAR, based on five-dimensional quantitative structure-activity
relationships) and compiled a pilot project, including the models of five receptor systems known to mediate
adverse effects (the aryl hydrocarbon (Ah), 5HT2A, cannabinoid, GABAA, and estrogen receptor, resp.) which
were already validated against 280 compounds (drugs, chemicals, toxins). Within this setup, we could
demonstrate that our virtual laboratory is able both to recognize toxic compounds substantially different from
those used in the training set as well as to classify harmless compounds as being nontoxic. The results suggest
that our approach can be used for the prediction of adverse effects of drug molecules and chemicals and, thus,
bears a significant potential to recognize hazardous compounds early in the development process hence
improving resource and waste management and reducing animal testing. It is the aim to provide free access to
this technology ± particularly to universities, hospitals, and regulatory bodies.

Introduction. ± In the last two decades, a large number of computer-aided-design
(CAD) concepts have been devised and have matured into powerful tools for the
development of new drugs or chemicals. While these concepts have reduced the time
scale on which new products emerged on the market, they have mainly focussed on a
rational and cost-effective lead-candidate optimization. More recently, the need has
arisen to further develop such tools to allow for a safe prediction of more complex
phenomena such as the acute toxicity or the bioavailability. While most concepts use
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1) The contributions of the honoree to this concept are manifold. A thorough analysis of small-molecule
crystal sructures has lead to the development of a directional force field for optimizing ligand-receptor
complexes. The understanding of phenomena such as induced fit or dynamic binding have been pioneered
by Professor Dunitz×s analyses of dynamic properties extracted from −crystal statics×. His more-recent
contributions to the understanding of solvation effects and entropic contributions to ligand binding are still
teaching us important lessons on how to model small-molecule�protein complexes.



one-dimensional (1D; e.g., pKa, log P, molecular surface area) or 2D (chemical
constitution and connectivity) information, and some are based on 3D data (structure
of the drug or chemical target), they seldom consider a major player, i.e., the biological
receptor. As biochemical processes at the molecular level are influenced by the mutual
adaptation of a drug or chemical and the biological receptor ± a process referred to as
induced fit ±, a simulation omitting such a mechanism will hardly be successful in
dealing with complex biochemical phenomena.

Toxicity testing ± mandatory by international regulations for drug development and
chemical safety ± is still associated with stressful animal tests. While many in vitro
approaches have been devised for targeting the various aspects of toxicological
phenomena, they require a chemical or drug molecule to be physically present (i.e.,
synthesized) before testing and are time consuming, and the results are often difficult to
reproduce. In contrast to in vitro assays, computational approaches can be applied to
hypothetical substances as their 3D structure can readily be generated in silico. The
nowadays available computer power permits scanning of large batches of compounds
(e.g., parts of corporate or public databases) in a relatively short time. Toxicity-
modeling algorithms are typically based on quantitative structure ± activity relation-
ships (QSAR), neuronal networks, or artificial intelligence.

QSAR method is an area of computational research, which builds atomistic or
virtual models to predict quantities such as the binding affinity, the acute toxicity, or
pharmacokinetic parameters of existing or hypothetical molecules. The idea behind
QSAR is that structural features can be correlated with biological activity. Structure-
activity relationships based on three-dimensional models (3-D QSAR) are very
powerful tools in biomedical research as they allow for the simulation of directional
forces ± H-bonds, metal ± ligand contacts, and electrostatic interactions ± known to play
a key role for both molecular recognition and binding. While at the true bioregulator
(enzyme, receptor, DNA, ion channel), only one ligand molecule binds at a time, a
QSAR study is typically based on a series of superimposed ligand molecules binding
−simultaneously× to the receptor surrogate. In 3D-QSAR ± where each ligand molecule
is represented by a single, three-dimensional entity, the identification of the bioactive
conformation, orientation, and possibly the protonation state are crucial steps in the
procedure. If the ligand alignment (the pharmacophore hypothesis) is based on
incorrect assumptions, the resulting receptor surrogate is hardly of any use for
predictive purposes. While this problem has long been recognized, only the more
recently developed 4D-QSAR technologies would seem to provide decent solutions
[1 ± 4]. An unbiased simulation of induced-fit phenomena (5D-QSAR) is a further
prerequisite for a realistic simulation of small-molecule (drug or toxin) interactions
with a macromolecular receptor at the molecular level [5].

Toxic agents, particularly those that exert their actions with a great deal of
specificity, sometimes act via receptors to which they bind with high affinity. This
phenomenon is referred to as receptor-mediated toxicity. Examples of soluble intra-
cellular receptors, which are important in mediating toxic responses, include the
glucocorticoid receptor, which is also involved in mediating toxicity-associated effects
such as apoptosis of lymphocytes as well as neuronal degeneration as a response to
stress, the peroxisome proliferator activated receptor, which is associated with
hepatocarcinogenesis in rodents, and the aryl hydrocarbon receptor (−dioxin receptor×),
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which is involved in a whole range of toxic effects [6]. Harmful effects of drugs and
chemicals can often be associated with their binding to other than their primary target ±
macromolecules involved in biosynthesis, signal transduction, transport, storage, and
metabolism [7 ± 13].

Methods. ± The −heart× of our virtual laboratory (cf. below) is a technology referred
to as quasi-atomistic receptor modeling. It allows to three-dimensionally map an
unknown or a hypothetical receptor onto a surface representing its active site, and to
quantitatively calculate the affinity of small molecules binding to it. The approach
combines receptor modeling based on a genetic algorithm and QSAR techniques. The
details of the concept (Quasar software) have been published elsewhere [4] [5] [14 ±
18]; in this account, we shall focus on its quantitative aspects.

The ligands from both training and test set are represented as an ensemble of
conformations, orientations, and protonation schemes, a concept referred to as 4D-
QSAR. Within this ensemble, the contribution of an individual entity to the total
energy is determined by using a normalized Boltzmann factor (see Eqn. 1) where w�
(� Ebdg,ind/Ebdg,ind,lowest)�1 is the normalizing factor.

Ebgd,tot�� Ebdg,ind ¥ exp(�w ¥Ebdg,ind/Ebdg,ind,lowest) (1)

The simultaneous evaluation of the various induced-fit scenarios (5D-QSAR) reduces
the bias with the selection of a single representation. Within the surrogate family, each
model (typically 200 ± 1000) may select one of the up to six different induced-fit
scenarios. In Quasar, those presently include an energy-minimized active-site surface, a
linear induced-fit as well as receptor adaptations based on the steric, electrostatic, H-
bond, and lipophilicity potential (exerted by the ligands of the training set at the inner
surface of the active site), respectively [4] [5] [15]. Simulations based on 5D-QSAR are
superior to n 4D-QSAR calculations (by using a single induced-fit scenario) as 5D-
QSAR allow for crossover of induced-fit scenarios during a simulation, i.e., different
induced-fit scenarios may be dominant at different times during the simulated
evolution (cf. Fig. 1). To reduce computing time, the algorithm allows to define a
parameter f that defines the probability of an induced-fit type being actually evaluated
depending on its current frequency. When setting f� 0.0, all types are always evaluated.
When setting f� 1.0, an −extinct type× would never be re-evaluated; by setting f� 0.9
(default), such types are still tested at a rate of 10%.

In Quasar, the −binding energy× of a ligand molecule towards the receptor surrogate
is calculated as the mean value towards each member of the receptor family. The latter
is determined by Eqn. 2.

Ebdg�Eforce-field�Epol�T�Sbdg�Esolv.,lig��Eint.,lig�Eind.fit (2)

Ebdg: resulting binding energy, proportional to �G� ; E� 0.0
Eforce-field : force-field energy (cf. Fig. 2) of the ligand-receptor interaction [19 ± 21] ;

E� 0.0
Epol : ligand� receptor and receptor� ligand polarization terms [22]; E� 0.0
T�Sbdg: change in ligand entropy upon receptor binding [23]; E� 0.0
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Esolv.,lig : ligand-desolvation energy [24]; E� 0.0 (for all charged and most neutral
species)

�Eint.,lig : change in ligand internal energy upon receptor binding [25]; E� 0.0
Eind.fit : energy uptake for adapting the receptor binding pocket to the ligand topology

[4] [5] [14 ± 16]; E� 0.0
The evaluation of the ligand-receptor (surrogate) interactions are based on a

directional force field [4] [5] [14 ± 16] [21]. Of particular interest is the expression for H-
bonds, interactions known to play a key role for both molecular recognition and
selective binding. Its force-field expression (Fig. 2) includes a term for the H ¥¥¥Acc
separation, a correction term for a nonlinear Don�H ¥¥¥Acc arrangement (Acc� ac-
ceptor, Don� donor) and a term for the deviation of the H-bond from the closest lone-
pair direction (angle H ¥¥¥Acc�LP; LP� lone pair). The function has been calibrated
for 14 different H-bond acceptor types [21] with data retrieved from the Cambridge
Structural Database (CSD) [19] [26 ± 29] [30]. The polarization terms may significantly
contribute to the total energy for ligands including larger polarizable fragments such as
aromatic rings, groups (nitro, carboxylate, phosphate), or elements (S, Cl, Br, I).

When calculating interactions between a molecule and a virtual receptor surrogate
(a molecular surface populated with atomistic properties, cf. [4 ± 5] [14 ± 16]), this
function cannot be directly applied, as a H-bond property (HBP) has no bond partners
and bears no lone-pairs. Therefore, we apply a reduced function to determine the non-
electrostatic contribution to the H-bond energy involving a HBP: For the constellation
Don�H ¥¥¥HBP, we correct for nonlinearity of the angle suspended at the H-atom
(compulsory assuming a perfect directionality at the HBP site). For the arrangement
Acc ¥¥¥ HBP, we correct for the deviation of the virtual H-bond from the closest lone
pair at the acceptor fragment (angle LP�Acc ¥¥ ¥HBP) and assume perfect linearity of
the H-bond. However, this may lead to unrealistic geometries, e.g., perfect linearity
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Fig. 1. Crossover of induced-fit scenarios during the evolution of a receptor surrogate for the enzyme dopamine
�-hydroxylase [15]



combined with poor directionality or vice versa, not in agreement with data retrieved
from the CSD [30] and the Protein Data Bank [31]. More recently, we, therefore, use
the mean value of the two quantities, leading to less-asymmetric arrangements [15].

Free energies of ligand binding, �G�, are then predicted by means of a linear
regression between �G� and Ebdg by using the ligand molecules of the training set
according to Eqn. 3. Slope a and intercept b are inherent to a given receptor model. As
in Quasar, the receptor surrogate is represented by a family of models (typically 200 ±
1000), this quantity is averaged over the n models comprising the receptor family. This
yields a less-random value for �G� and allows each model within the surrogate family
to represent aspects of other features at the true biological receptor ± induced fit,
dynamic behavior, polarizability [32].

�Go

calc �� a � ¥Ebdg� b (3)

The change in entropy upon ligand binding may provide an essential contribution to
changes in free energy. By default, the algorithm assigns � 0.7 kcal/mol to each freely
rotatable bond [23], excluding terminal Me groups. Translational and rotational
components to this quantity are not relevant in receptor-modeling studies as only
relative �G� values are of importance in this context. When analyzing the binding of
structurally much different molecules ± particularly, such smaller in size ± where
alternate binding modes can be assumed, the latter terms can no longer be neglected.
Molecules that can bind to various positions and orientations are less affected by a
change in entropy than those fitting more snugly in the binding pocket. Entropy may
become even more dominant when considering the solvent displaced during binding, a
phenomenon referred to as solvent stripping (cf. also below). An interesting aspect of
this effect has been discussed by Dunitz [33].

The contribution of ligand (de)solvation to the change in free energy of ligand
binding can be substantial, particularly when charged species are involved and this
energy ranges from 50 ± 60 kcal/mol (compared to 0 ± 10 kcal/mol for neutral mole-
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Fig. 2. The directional force-field used in Quasar [1] [10 ± 14] [20]



cules). This has two consequences: first, a small error in the computed solvation energy
could jeopardize an otherwise robust simulation. Second, in the context of the virtual
laboratory, we have to deal with receptor surrogates constructed based on charged
ligand species, but we might be forced to test against neutral compounds (and vice
versa). In such a situation, the compound to be tested will yield too high or much too
low affinities. We will, therefore, implement and test an alternative scheme not
depending on the actual partial-charge model, e.g., as proposed by Viswanadhan et al.
[34].

If the molecular volume of a series of ligand molecules used in a multidimensional
QSAR study varies considerably, however, the assumptions underlying Eqn. 2 are no
longer valid, as each molecule may displace (strip off) a different number of H2O
molecules bound to the receptor in the free state. Quasar allows us to correct for this
effect by scaling the ligand-desolvation energy to the relative molecular volume
(calculated based on a 0.5-ä-spaced 3-D grid) of a molecule and the given induced-fit
scenario. The algorithm is based on the thought that more H2O molecules are stripped
off when a large receptor-to-ligand adaptation takes place, but only few H2O molecules
are displaced when a negligible or small induced fit occurs, i.e., the binding pocket
remains unaltered, allowing for more solvent molecules to remain receptor-bound.

The estimation of internal strain ± a small molecule may not bind to a bioregulator
in its lowest-energy conformation ± is less problematic as we use the same force field for
both conformational search and receptor modeling. When data is imported from
simulations with different force fields, however, this quantity may have to be
recalculated or appropriately scaled. When using a multiple ligand representation
(4D-QSAR) for highly flexible molecules, the question arises how energetically
−unfavorable× conformers should be included in the simulation. For practical purposes
(cpu time), we typically use 4 ± 32 representations per molecule. The 18 systems
simulated so far suggest that any conformation more than 10 ± 12 kcal/mol above the
global minimum (in aqueous solvent) is hardly accepted as the bioactive conformer;
the energetic cost for internal strain would simply be too high.

To reduce the bias associated with the selection of an induced-fit model, Quasar
allows for multiple representation of induced-fit scenarios. Presently, up to six different
mechanisms (cf. above) may be simultaneously evaluated (see Fig. 3). In absence of the
three-dimensional structure of the true biological receptor, this quantity is difficult to
estimate. In our concept, the energy associated with the receptor-to-ligand adaptation is
calculated from the r.m.s. shift of the mean (accommodating all ligands of the training
set) to an inner surface (snugly fitting to each individual ligand molecule). This shift
varies substantially for the six different protocols [5] [15] but is typically limited to a
r.m.s. shift of 2 ± 3 ä. Larger induced-fit scenarios (as experimentally observed) cannot
presently be simulated with our technology.

The Quasar concept has been validated for various receptor systems, representing
both pharmacological and toxicological targets [4] [5] [14 ± 18]. A selection of the
results is given in the Table.

Results and Discussion. ± More recently, we have started to model receptor-
mediated toxic phenomena, including the aryl hydrocarbon (Ah) receptor [5] [17] and
estrogen receptor [36], using large data sets of 121 and 106 compounds, respectively.
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Fig. 4 shows the results for the simulation of the Ah receptor. This model has also been
used to predict the toxicity of four new compounds (blue dots) ± for those, the mean
deviation of the binding affinity from the experiment was calculated to a factor of only
2.2 in K [5].

As the manifestation of a toxic phenomenon is a complex result of a cascade of
biochemical events and transformations (Fig. 5), it is of utmost importance to
demonstrate that a correlation exists between receptor binding and the manifestation
of the toxic phenomenon. Unfortunately, this correlation cannot be established for
most receptors mediating adverse effects for the simple reason that no quantitative
binding data are available. On the other hand, receptor-modeling algorithms tend to
fail, for the given data set, when no common underlying mechanism exists. To
demonstrate this most-desired property of Quasar, we conducted several so-called
poisoning experiments, where a different class of molecules is deliberately added to an
otherwise consistent set of data. Fig. 6 shows the result of such a simulation for the Ah
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Fig. 3. Fig. 3. Stereo view of six superimposed induced-fit scenarios for the NK-1 receptor. Color coding: grey�
minimized; yellow� linear, red� steric; orange� electrostatic; blue�H-bond; green� lipophilicity.

Table 1. Summary of Results Obtained with the 5D-QSAR Software Quasar

Receptor system Number of training
and test substances

Cross-validated
(and predicitive) r2

R.m.s. deviation
of the test set
[factor in K]

Max. deviation
of the test set
[factor in K]

5HT2A 23� 7 0.950 (0.860) 2.0 3.0
Aryl hydrocarbon (Ah) 91� 30 0.861 (0.697) 3.2 10.2
Chemokin 81� 32 0.790 (0.830) 1.6 2.9
Estrogen 84� 22 0.891 (0.782) 5.2 13.6
Neurokinin-1 50� 15 0.870 (0.837) 2.3 5.7
Steroid 21� 10 0.947 (0.912) 1.8 2.8



receptor system where 16 sulfonamide drugs (all nontoxic) have been added to the 121
toxins (dibenzodioxins, dibenzofurans, biphenyls, and polyaromatic hydrocarbons)
comprising the Ah data set. While the correct simulation reached a cross-validated r2 of
0.861, the −poisoned× simulation converged at a very low value of 0.339, hence
demonstrating that no solution is found if no common underlying mechanism exists. It
is noteworthy that the −poisoned data× (random affinities were assigned for those) in the
training set represents only 10% of the whole set. That the affinity of these compounds
cannot be reproduced is obvious; that the algorithm does not find a solution for the
91� 30 true toxins demonstrates that the genetic algorithm is sensitive to the
consistency of the ligand data.
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Fig. 4. Experimental and calculated binding affinities for the aryl hydrocarbon (Ah) receptor. Color coding:
green� training set (91), red� test set (30), blue�predictions (4).



These results stimulated us to establish a virtual laboratory to allow for an in silico
estimation of harmful effects triggered by drugs, chemicals, and their metabolites, and
to make it accessible through the Internet. The philosophy behind our concept is that
any existing or hypothetical compound can quickly be tested against a large batch of
3D receptor models (deposited in the database). Should a high affinity be predicted
towards any receptor model, the substance is likely to cause adverse effects and should
therefore be withdrawn from the evaluation pipeline (drug candidates) or handled with
special care (existing chemicals) but definitely not conveyed on to in vivo toxicity tests
[17] [18].

Presently, our database includes validated models for five biological targets
mediating adverse effects: the aryl hydrocarbon (Ah), the 5HT2A, the cannabinoid, the
GABAA, and the estrogen receptor, respectively. The flow chart of the proposed virtual
laboratory is shown in Fig. 7. Using these data (5 receptor models, 280 compounds)
within a pilot setup, we have addressed the following questions:

1) Are nontoxic substances safely identified? To demonstrate that no false-
positives are likely to be obtained, we used harmless drug molecules similar in their
topology (three-dimensional shape) with toxins known to bind to the Ah receptor. The
selected 16 drug molecules fit snugly into the binding pocket of the receptor surrogate
but did not show any significant binding affinity (K� 0.1 m�) ± as a matter of fact, only
FurosemideTM (� 5-(aminosulfonyl)-4-chloro-2-[(furan-2-ylmethyl)amino]benzoic
acid; K� 10 m�) −binds× at all, while all other 15 compounds have a positive free
energy of ligand binding (�G�� 0.0), i.e., they could not trigger any effects via the Ah
receptor even if they were to be massively overdosed (Fig. 8).

Fig. 5. Receptor-mediated toxicity: receptor binding and manifestation of adverse effects
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2) Can the algorithm distinguish between toxic and harmless compounds within a
foreign data set, i.e., substances that are structurally different from those used to train
the system? Again, we have selected the Ah receptor but used compounds from
different chemical classes: 1,2,3,4-tetrahydroharman-3-carboxylic acid (�1,2,3,4-tetra-
hydro-1-methyl-9H-pyrido[3,4-b]indole-3-carboxylic acid�HTCA), harmol (�1-
methyl-9H-pyrido[3,4-b]indol-7-ol), harmalol (�4,9-dihydro-1-methyl-3H-pyri-
do[3,4-b]indol), harmine (� 7-methoxy-1-methyl-9H-pyrido[3,4-b]indole), harman
(�1-methyl-9H-pyrido[3,4-b]indole), norharman (� 9H-pyrido[3,4-b]indole), guana-
benz (�2-[(2,6-dichlorophenyl)methylene]hydrazinecarboximidamide), and idazoxan
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Fig. 6. Comparison of experimental and predicted binding affinities for the Ah receptor system. The data set has
been poisoned −poisoned× with 10% of nontoxic compounds.
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Fig. 7. Flow-chart of the virtual laboratory for the in silico screening for adverse effects

Fig. 8. Prediction of nontoxic drugs hypothetically binding to the Ah receptor [18]. For the structure of
Furosemide, see top left.



(�2-(2,3-dihydro-1,4-benzodioxin-2-yl)-4,5-dihydro-1H-imidazole) for which semi-
quantitative binding data are available [37]. Of these, only HTCA shows a substantial
toxic effect mediated by the Ah receptor system while all other compounds are
nontoxic at low-level doses ± some of these compounds bind to monoamine oxidase and
display hallucinogenic activity. The result of our simulation is shown in Fig. 9. The
binding affinity of HTCA is calculated to 112 n� (exper. 60 n�), suggesting a rather
high toxicity at low dosage (for comparison: TCDD (�2,3,7,8-tetrachlorodibenzo-
[b,e][1,4]dioxin) binds with an affinity of 10 n� to the Ah receptor). The calculated
affinity for all other compounds lies in the range of 0.1 ± 10 m�, a level at which no
adverse effects are expected to be mediated by the Ah receptor, which is in agreement
with the experimental binding data [37].

Those nine compounds were also tested against the other four receptor systems
presently stored in our database: the 5HT2A, the cannabinoid, the GABAA, and the
estrogen receptor, respectively. From their topology, most of them can bind to one or
more of these surrogates. However, in the virtual experiment, no binding affinity (K�
0.1 m�) was observed, except for HTCA which has a calculated affinity of 28 ��
towards the estrogen receptor and 5.7 n� (!) against the cannabinoid receptor as well
as guanabenz, which binds with an affinity of 1.8 �� to the GABAA receptor.

Within our pilot system, we could demonstrate that this test setup is able to predict
both the known toxicity of compounds different from those in the training set and the
benign character of currently available drugs. This suggests that our approach can be
used for the prediction of adverse effects of molecules prior to their synthesis. The
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Fig. 9. Prediction of the binding affinity of nine monoamine oxidase inhibitors (MAOIs) also known to bind to
the Ah receptor [18] [37]



power of the concept lies with a low rate of false-positive predictions, i.e., a compound
predicted to trigger adverse effects is most likely to be harmful in reality as well. On the
other hand, it is obvious that, no matter how many receptor models are stored in the
database, such a virtual laboratory will never be able to identify all toxic substances ±
this is by no means our objective ± as there are many other, more-complex pathways
leading to the manifestation of toxic phenomena. As a large body of receptors
mediating toxic phenomena exists, the number of false-negative hits can be lowered by
increasing the number of validated receptor models stored in the database.

The basic technologies ± software Quasar [4] [5] [15] and Toxar [38], respectively ±
are available, and the internet protocol for an external access is presently being
developed. We therefore plan to make the virtual laboratory available to selected
institutions as early as 2005 and to the scientific community as soon as the security
measures (e.g., against misusing the virtual laboratory for non-scientific purposes) are
considered to be sufficient. We think that our concept has the potential for a significant
contribution to laboratory-animal welfare (in vivo toxicity tests).

Outlook. ± As a next step, we plan to generate and validate receptor surrogates for
the following systems: NMDA (N-methyl--aspartate) receptor involved in Alzheimer
and Parkinson disease pathways; AMPA (2-amino-3-(3-hydroxy-5-methylisoxazol-4-
yl)propanoic acid) receptor mediating exitotoxicity; histamine H1 (bronchiolar or
gastrointestinal smooth-muscle constriction, bronchial hyperreactivity) or histamine
H2 receptor (CNS neurotransmission; delirium, confusion, agitation, and seizures);
mACh (muscarinic acetylcholine) receptor (urinary retention, blurred vision; Parkin-
son, Alzheimer); androgen receptor (side effects during sexual differentiation).
Scramble tests (cf. [4 ± 5] [15]) and cross-validation with all data sets and all surrogates
in the database will further demonstrate ± or disqualify ± the validity of each individual
model. For the cross-validation, we are using our in-house database including over 400
substances for which not only their 3D structure is available but also their 4D
conformational ensemble compiled by means of conformational-search protocols.

Adverse effects may be triggered not only by the interaction of a drug or chemical
with a mediating receptor system but also by inhibition of processes associated with
both phase-I and phase-II reactions during biotransformation, e.g., the cytochrome
P450 system. During such reactions, chemicals may also be metabolized and sometimes
lead to toxic (e.g., carcinogenic) products. Therefore, we plan to add a series of
surrogates generated based on active inhibitors of these isoenzymes. As several
homology models are available, we will use receptor-mediated alignment protocols [39]
for model development. The Fe-containing heme portion will be modeled by means of
a directional metalloprotein force field [21].

The proposed Internet laboratory could contribute to a significant reduction in
animal testing. First, it allows for an early ± before compound synthesis ± recognition of
potentially harmful substances. By removing those candidate substances from the
evaluation pipeline, they will not be forwarded to any in vivo toxicity tests. This would
seem to be a realistic scenario as the most important feature of our virtual experiments
is not having produced any false-positive results so far. Second, a widely used database
of this kind would reduce the number of otherwise doubly-conducted (toxicity) tests at
research laboratories focussed on identical or closely related biomedical targets. The
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main advantage of the proposed virtual laboratory ± for example, when compared with
in vitro assays ± is that it can be applied to hypothetical substances.

Another field of application includes the toxicity testing of chemicals ± for example,
the 30000 compounds that will have to be retested by 2012 ± as defined in the European
Commission×s well-documented −White Paper on the Strategy for a Future Chemicals
Policy× [40] ± and causing an estimated toll of 10 million laboratory animals. Here, our
system could prove to be a useful in silico screening tool as any compound can be tested
with only moderate −human× effort. The importance of QSAR has more recently been
acknowledged by the OECD [41], and the Danish Environmental Protection Agency
has taken the lead in use of structure-based methods to prioritize hazardous chemicals
[42].

Information on this project is continuously updated under http://www.biograf.ch/projects.html; information
about the Quasar software can be found at http://www.biograf.ch/software.html. Corresponding articles
published in ALTEX may be downloaded from http://www.biograf.ch/publications.html (all in pdf format).

We are most grateful to Professor Jack D. Dunitz for 30 years of asking the right questions and, even more
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Francis-Fleitmann Foundation, Lucerne, Switzerland.
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